
February 18, 2011 User Guide

Cray XE6 (Raptor)

User Guide

Air Force Research Laboratory (AFRL)

 DoD Supercomputing Resource Center (DSRC)

February 18, 2011 User Guide

Release Notes
16 February 2011 Initial Release

18 February 2011 Updated cc path information

 Updated font size and color

February 18, 2011 User Guide

Contents
Release Notes .. 2
1 Introduction .. 5

1.1 Document Scope & Assumptions .. 5
1.2 Policies to Review .. 5

1.3 Obtaining Accounts .. 5
1.4 Requesting Assistance .. 5

2 System Configuration .. 6
2.1 Processors ... 6
2.2 Memory .. 7

2.3 Operating System .. 7
2.4 File Systems .. 7

2.5 Peak Performance ... 7
3 Accessing the System ... 8

3.1 Kerberos .. 8
3.2 Logging In .. 8

3.3 File Transfers ... 8
4 User Environment .. 8

4.1 User Directories ... 8

4.1.1 Home Directory ... 8

4.1.2 Work Directory .. 9

4.2 Shells ... 9

4.3 Environment Variables ... 9
4.3.1 Login Environment Variables .. 9

4.3.2 Batch-Only Environment Variables.. 10

4.4 Modules ... 10

4.5 Archive Usage ... 11
4.5.1 Archival Command Synopsis .. 11

5 Program Development ... 12
5.1 Programming Models ... 12

5.1.1 Message Passing Interface (MPI) ... 12

5.1.2 SHared MEMory (SHMEM) ... 13

5.1.3 Open Multi-Processing (OpenMP) .. 15

5.1.4 Hybrid MPI/OpenMP ... 16

5.2 Available Compilers ... 16
5.2.1 Cray Compiler Programming Environment 16

5.2.2 PGI Compiler Programming Environment 17

5.2.3 GCC Compiler Programming Environment 17

5.2.4 Intel Compiler Programming Environment 17

February 18, 2011 User Guide

5.3 Relevant Modules .. 17

5.4 Libraries ... 17
5.4.1 AMD Core Math Library (ACML) ... 17

5.4.2 Cray LibSci .. 18

5.4.3 Additional Math Libraries ... 18

5.5 Debuggers ... 18
5.5.1 gdb .. 18

5.5.2 TotalView .. 19

5.6 Code Profiling and Optimization .. 20
5.6.1 CrayPat ... 20

5.6.2 Additional Profiling Tools ... 21

5.6.3 Program Development Reminders .. 21

5.6.4 Performance Optimization Methods .. 21

6 Batch Scheduling ... 23

6.1 Scheduler ... 23
6.2 Queue Information ... 23

6.3 Interactive Logins ... 24
6.4 Interactive Batch Sessions ... 24
6.5 Batch Request Submission .. 24

6.6 Batch Resource Directives... 25
6.7 Launch Command(s) ... 25

6.8 Sample Scripts ... 25

6.9 PBS Commands .. 27

6.10 Advance Reservations .. 27
7 Software Resources .. 27

7.1 Application Software .. 27

7.2 Useful Utilities .. 27
7.3 Sample Code Repository ... 28

8 Links to Vendor Documentation ... 28
8.1 Cray Links .. 28
8.2 SUSE Links .. 29

8.3 GNU, Pathscale, and Portland Group Links ... 29

February 18, 2011 User Guide

1 Introduction

1.1 Document Scope & Assumptions

This document provides an overview and introduction to the use of the Cray XE6
(Raptor) located at the AFRL DSRC and a description of the specific computing
environment on Raptor. The intent of this guide is to provide information to
enable the average user to perform computational tasks on the system. To
receive the most benefit from the information provided here, you should be
proficient in the following areas:

 Use of the LINUX operating system

 Use of an editor (e.g. vi or emacs)

 Remote usage of computer systems via network or modem access

 A selected programming language and its related tools and libraries

1.2 Policies to Review

All policies are discussed on the AFRL webpage. All users running at the AFRL
DSRC are expected to know, understand, and follow the policies discussed. If
you have any questions about AFRL DSRC’s policies, please contact the CCAC.

1.3 Obtaining Accounts

Authorized DOD and Contractor personnel may request an account on Raptor
through their Service Agency Approval Authority (S/AAA) and Principle
Investigator (PI). Your S/AAA and PI will assign you an HPMCP project that
allows you to have allocations on the HPC systems at the DSRC. As you go
through the process, you may want to refer to our step-by-step guide. More
information can be found through the HPCMP Portal to Information Environment
(pIE) or through the Consolidated Customer Assistance Center (CCAC).

1.4 Requesting Assistance

The Consolidated Customer Assistance Center (CCAC) is available to help users
with any problems, questions, or training requirements for our HPC systems.
Analysts are on duty Monday - Friday, 8:00 a.m. to 11:00 p.m. Eastern Time.

Web: http://www.ccac.hpc.mil/cust_serv_form.php
Email: help@ccac.hpc.mil
Phone: 1-877-CCAC-039 (1-877-222-2039) or 937-255-0679
Fax: 937-656-9538

http://www.afrl.hpc.mil/overall/policy_procedure/policies/use_policy.php
http://www.ccac.hpc.mil/accounts/index.html
https://ieapp.erdc.hpc.mil/info/kerberosValidate.jsp
https://ieapp.erdc.hpc.mil/info/kerberosValidate.jsp
http://www.ccac.hpc.mil/accounts/index.html
http://www.ccac.hpc.mil/cust_serv_form.php
help@ccac.hpc.mil

February 18, 2011 User Guide

2 System Configuration

Raptor is a Cray XE6. The login nodes are populated with 2.7‑GHz AMD

Opteron 64‑bit quad‑core processors. The compute nodes are populated with

2.4‑GHz AMD Opteron 64‑bit 8‑core processors. Raptor uses a dedicated Cray

Gemini communications network for MPI messages and IO traffic. Raptor uses
Lustre to manage its high-speed, parallel, Infiniband RAID file system. Raptor
has 2732 compute nodes that share memory only on the node; memory is not
shared across the nodes. Each compute node has two 8-core processors
(16 cores) with its own Compute Node Linux (CNL) operating system and 32
GBytes of DDR3 memory, with no user-accessible swap space. CNL provides
many of the operating system functions available through the service nodes,
although some functionality has been removed to improve performance and
reduce memory usage by the system. Raptor has 344 TBytes (formatted) of disk
storage.

Raptor is intended to be used as a batch-scheduled HPC system. Its login nodes
are not to be used for large computational (e.g. memory, IO, long executions)
work. All executions that require large amounts of system resources must be
sent to the compute nodes by batch job submission.

Node Configuration

 Login Nodes Compute Nodes

Total Nodes 7 2732

Operating System SUSE Linux CNL

Cores/Node 16 16

Core Type AMD Opteron 64‑bit AMD Opteron 64‑bit

Core Speed 2.7 GHz 2.4 GHz

Memory/Node 128 GBytes 32 GBytes

User Accessible
Memory/Node

126 GBytes 30 GBytes

Memory Model Shared in node Shared in node
Distributed across cluster

Interconnect Type Ethernet Cray Gemini

File Systems

File System File System Type Formatted Capacity

/work ($WORKDIR file
system)

Lustre 1.4 TBytes

/home ($HOME file
system)

Lustre 1.6 PBytes

Figure 1: Configuration and File System Types

2.1 Processors

February 18, 2011 User Guide

Raptor uses AMD Opteron 64-bit processors on its login and compute nodes.
Login nodes run at 2.7 GHz and have four quad-core processors for a total of 16
cores per node. These processors have 64 KBytes of L1 instruction cache, 64
KBytes of L1 data cache, 512 KBytes of L2 cache, and 6 MBytes of L3 cache.

Compute nodes run at 2.4 GHz and have two 8-core processors for a total of 16
cores per node. These processors have 64KBytes of L1 instruction cache,
64KBytes of L1 data cache, 512 KBytes of L2 cache, and 12 MBytes of L3
cache.

2.2 Memory

Raptor uses both shared and distributed memory models. Memory is shared
among all the cores on a node, but is not shared among the nodes across the
cluster.

Each login node contains 128 GBytes of main memory. All memory and cores on
the node are shared among all users who are logged in. Therefore, users should
not use more than 8 GBytes of memory at any one time.

Each compute node contains 30 GBytes of user accessible shared memory.

2.3 Operating System

The operating system on Raptor's login nodes is SUSE Linux 11. The compute
nodes use Compute Node Linux (CNL). The combination of these two operating
systems is known as the Cray Linux Environment (CLE).

2.4 File Systems

Raptor has the following file systems available for user storage:

/home
/home is a locally mounted Lustre file system. It has a formatted capacity of
1.6 PBytes. All users have a home directory located on this file system which

can be referenced by the environment variable $HOME.

/workspace
/work is a locally mounted Lustre file system that is tuned for high-speed I/O
performance. It has a formatted capacity of 1.4 TBytes. All users have a work
directory located on this file system which can be referenced by the environment

variable $WORKDIR.

2.5 Peak Performance

Raptor is rated at 34.379 HABUs and 410.04 peak TFLOPS.

February 18, 2011 User Guide

3 Accessing the System

3.1 Kerberos

A Kerberos client kit must be installed on your desktop to enable you to get a
Kerberos ticket. Kerberos is a network authentication tool that provides secure
communication by using secret cryptographic keys. Only users with a valid
HPCMP Kerberos authentication can gain access to Raptor. More information
about installing Kerberos clients on your desktop can be found at the CCAC
Support page .

3.2 Logging In

The preferred login to Raptor is ssh:
% ssh raptor-l0#.afrl.hpc.mil (# =1-8)

Kerberized telnet and rlogin are also allowed.

3.3 File Transfers

File transfers to DSRC systems must be performed using Kerberized versions of
the following tools: scp, ftp, sftp, and mpscp, except file transfers to the local
archive system.

4 User Environment

4.1 User Directories

4.1.1 Home Directory

Each user is allocated a home directory (the current working directory
immediately after login) with an initial disk quota of 1 GBytes of permanent
storage that is not backed up. Your home directory can be referenced locally with

the $HOME environment variable from all nodes in the system.

You may submit a request to increase your disk space quota by contacting our
Service Center. You must supply the following information for evaluation of the
request by the system administrators and the AFRL DSRC management:

 Amount of system resource requested

 Length of time requested for the increase

 Special deadlines for the project

 Explanation of the attempts to work within limits

http://www.ccac.hpc.mil/support/index.html
http://www.ccac.hpc.mil/support/index.html

February 18, 2011 User Guide

4.1.2 Work Directory

Raptor has one large file system (/workspace) for the temporary storage of data
files needed for executing programs. You may access your personal working

directory under /workspace by using the $WORKDIR environment variable, which is

set for you upon login. Your $WORKDIR directory has no disk quotas, and files
stored there do not affect your permanent file quota usage. Because of high

usage, the /workspace file system tends to fill up frequently. Please review the
Purge Policy and be mindful of your disk usage.

REMEMBER: /workspace is a "scratch" file system and is not backed up. You

are responsible for managing files in your $WORKDIR by backing up files to the
MSAS and deleting unneeded files when your jobs end.

All of your jobs should execute from your $WORKDIR directory, not $HOME. While not

technically forbidden, jobs that are run from $HOME are subject to disk space
quotas and have a much greater chance of failing if problems occur with that

resource. Jobs that are run entirely from your $WORKDIR directory are more likely
to complete, even if all other resources are temporarily unavailable.

If you use $WORKDIR in your batch scripts, you must be careful to avoid having
one job accidentally contaminate the files of another job. One way to avoid this is
to use the $JOBDIR (or $WORK_DIR) directory which is unique to each job on
the system. The $JOBDIR directory is not subject to the Purge Policy until the job
exits the workload management system.

4.2 Shells

The following shells are available on Raptor: csh, bash, ksh, tcsh, and sh. To
change your default shell, use “setenv User_Shell shell” in your
$HOME/.personal.login file to change your .

4.3 Environment Variables

A number of environment variables are provided by default on all HPCMP high
performance computing (HPC) systems. We encourage you to use these
variables in your scripts where possible. Doing so will help to simplify your
scripts and reduce portability issues if you ever need to run those scripts on other
systems.

4.3.1 Login Environment Variables

The following environment variables are common to both the login and batch
environments:

Common Environment Variables

Option Purpose

$ARCHIVE_HOME Your directory on the archival system

$ARCHIVE_HOST The host name of the archival system

February 18, 2011 User Guide

$CSI_HOME The path to the directory for the following list of heavily
used application packages: ABAQUS, Accelrys,
ANSYS, CFD++, Cobalt, EnSight, Fluent, GASP,
Gaussian, LS-DYNA, MATLAB, and TotalView, formerly
known as the Consolidated Software Initiative (CSI) list.
Other application software may also be installed here
by our staff.

$DAAC_HOME The path to the directory containing the ezViz
visualization software

$HOME Your home directory on the system

$JAVA_HOME The path to the directory containing the default
installation of JAVA

$PET_HOME The path to the directory containing the tools installed
by the PET CE staff. The supported software includes
a variety of open source math libraries (see
BC policy FY06-01) and open source performance and
profiling tools (see BC policy FY07-02).

$SAMPLES_HOME The path to the Sample Code Repository. This is a
collection of sample scripts and codes is provided and
maintained by our staff to help users learn to write their
own scripts. There are a number of ready-to-use
scripts for a variety of applications.

$WORKDIR Your work directory on the local temporary file system
(i.e., local high speed disk).

4.3.2 Batch-Only Environment Variables

In addition to the variables listed above, the following variables are automatically
set only in your batch environment. That is, your batch scripts will be able to see
them when they run. These variables are supplied for your convenience and are
intended for use inside your batch scripts.

Batch-Only Environment Variables

Option Purpose

$BC_CORES_PER_NODE The number of cores per node for the compute
node on which a job is running.

$BC_MEM_PER_NODE The approximate maximum user-accessible
memory per node (in integer MBytes) for the
compute node on which a job is running.

$BC_MPI_TASKS_ALLOC The number of MPI tasks allocated for a job.

$BC_NODE_ALLOC The number of nodes allocated for a job.

4.4 Modules

http://www.ccac.hpc.mil/consolidated/bc/policies.php?choice=math
http://www.ccac.hpc.mil/consolidated/bc/policies.php?choice=performance
http://www.ccac.hpc.mil/consolidated/bc/policies.php?choice=repository

February 18, 2011 User Guide

Software modules are a very convenient way to set needed environment
variables and include necessary directories in your path so that commands for
particular applications can be found. Raptor uses "modules" to initialize your
environment with system commands and libraries and compiler suites,

A number of modules are loaded automatically as soon as you log in. To see the
modules which are currently loaded, run "module list". To see the entire list of
available modules, run "module avail". You can modify the configuration of your
environment by loading and unloading modules. For complete information on
how to do this, see the Modules User Guide.

4.5 Archive Usage

All of our HPC systems share an on-line Mass Storage Archival system (MSAS)
that currently has more than 5 TBytes of Tier 1 archival storage (disk cache) and
2.2 PBytes of Tier 2 high speed archival storage utilizing a robotic tape library.
The MSAS should only be used for long term storage. Every user is given an
account on the MSAS.

Kerberized login and ftp are allowed into the MSAS system. Locally developed
utilities may be used to transfer files to and from the MSAS as well as to create
and delete directories, rename files, and list directory contents. For convenience,

the environment variable $ARCHIVE_HOME can be used to reference your MSAS
archive directory when using archive commands. The command getarchome can

be used to display the value of $ARCHIVE_HOME for any user.

4.5.1 Archival Command Synopsis

A synopsis of the main archival utilities is listed below. For information on

additional capabilities, see the Archive User’s Guide or read the on‑line man

pages that are available on each system. These commands are non-Kerberized
and can be used in batch submission scripts if desired.

Copy one or more files from the MSAS:

List files and directory contents on the MSAS:

Create directories on the MSAS:

archive get [-C path] [-s] file1 [file2…]

archive ls [lsopts] [file/dir ...]

archive mkdir [-C path] [-m mode] [-p] [-s] dir1 [dir2 ...]

February 18, 2011 User Guide

Copy one or more files to the MSAS:

5 Program Development

5.1 Programming Models

Raptor supports three base programming models: Message Passing Interface

(MPI), SHared‑MEMory (SHMEM), and Open Multi‑Processing (OpenMP). A

Hybrid MPI/OpenMP programming model is also supported. MPI and SHMEM

are examples of the message- or data‑passing models, while OpenMP only uses

shared memory on a node by spawning threads.

5.1.1 Message Passing Interface (MPI)

This release of MPI-2 derives from Argonne National Laboratory MPICH-2 and
implements the MPI-2.2 standard, except for spawn support, as documented by
the MPI Forum in MPI: A Message Passing Interface Standard, Version 2.2.

On Cray systems, MPI is a component of the Cray Message Passing Toolkit
(MPT), which is a software package that supports parallel programming across a
network of computer systems through a technique known as message passing.
MPI establishes a practical, portable, efficient, and flexible standard for message
passing that makes use of the most attractive features of a number of existing
message-passing systems, rather than selecting one of them and adopting it as
the standard. See "man intro_mpi" for additional information.

When creating an MPI program on Raptor, ensure that the following actions are
taken:

 Make sure the Message Passing Toolkit (module xt-mpt) is loaded.
To check this, run the "module list" command. If xt-mpt is not listed, use
the command, "module load xt-mpt".

 Make sure the source code includes one of the following lines :

INCLUDE "mpif.h" //for Fortran, or

#include <mpi.h> //for C

To compile an MPI program, use the following examples:

archive put [-C path] [-D] [-s] file1 [file ...]

February 18, 2011 User Guide

To run an MPI program within a batch script, use the following command:

where N is the number of processes being started, with each process utilizing
one core. The aprun command launches executables across a set of CNL
compute nodes. When each member of the parallel application has exited, aprun
exits.

A common concern for MPI users is the need for more memory for each process.
By default, one MPI process is started on each core of a node. This means that
on Raptor, the available memory on the node is split sixteen ways. To allow an
individual process to use more of the node's memory, you need to start fewer
processes. To accomplish this, do the following:

Here, N1 is used as in the previous example. N2, however, is the number of MPI
process to be started on each node. To give all of a node's memory to one
process, set N2 equal to 1.

For more information about aprun, see the aprun man page.

5.1.2 SHared MEMory (SHMEM)

These logically shared, distributed-memory access routines provide

high‑performance, high‑bandwidth communication for use in highly parallelized

scalable programs. The SHMEM data‑passing library routines are similar to the

MPI library routines: they pass data between cooperating parallel processes. The

SHMEM data‑passing routines can be used in programs that perform

computations in separate address spaces and that explicitly pass data to and
from different processes in the program.

The SHMEM routines minimize the overhead associated with data‑passing

requests, maximize bandwidth, and minimize data latency. Data latency is the
length of time between a process initiating a transfer of data and that data
becoming available for use at its destination.

ftn -o mpi_program mpi_program.f //for Fortran,

or

cc -o mpi_program mpi_program.c //for C

aprun –n N mpi_program [user_arguments]

aprun –n N1 –n N2 mpi_program [user_arguments]

February 18, 2011 User Guide

SHMEM routines support remote data transfer through put operations that
transfer data to a different process and get operations that transfer data from a

different process. Other supported operations are work‑shared broadcast and

reduction, barrier synchronization, and atomic memory updates. An atomic
memory operation is an atomic read and update operation, such as a fetch and
increment, on a remote or local data object. The value read is guaranteed to be
the value of the data object just prior to the update. See "man intro_shmem" for
details on the SHMEM library.

When creating a SHMEM program on Raptor, ensure that the following actions
are taken:

 Make sure the Message Passing Toolkit (module xt-mpt) is loaded.
To check this, run the "module list" command. If xt-mpt is not listed, use
the command, "module load xt-mpt"

 The source code includes one of the following lines:

INCLUDE 'mpp/shmem.fh' //for Fortran, or

#include <mpp/shmem.h> //for C

 The compile command includes an option to reference the SHMEM
library.

To compile a SHMEM program, use the following examples:

Before running a SHMEM program, you may want to set the following
environment variables:

The program can then be launched using the aprun command as follows:

aprun -n N shmem_program [user_arguments]

where N is the number of processes being started, with each process utilizing
one core. The aprun command launches executables across a set of CNL
compute nodes. When each member of the parallel application has exited, aprun
exits. For more information about aprun, see the aprun man page.

setenv XT_LINUX_SHMEM_STACK_SIZE 24m

setenv XT_LINUX_SHMEM_HEAP_SIZE 120m

setenv XT_SYMMETRIC_HEAP SIZE 20m

ftn –lsma -o shmem_program shmem_program.f90 //for Fortran

or

Cc -lsma -o shmem_program shmem_program.c //for C

February 18, 2011 User Guide

5.1.3 Open Multi-Processing (OpenMP)

OpenMP is an application programming interface (API) that supports multi-
platform shared memory multiprocessing programming in C, C++ and Fortran. It
consists of a set of compiler directives, library routines, and environment
variables that influence run-time behavior. OpenMP is a portable, scalable model
that gives programmers a simple and flexible interface for developing parallel
applications.
When creating an OpenMP program on Raptor, ensure that the following actions
are taken:

 Ensure the Message Passing Toolkit (module xt-mpt) is loaded.
To check this, run the "module list" command. If xt-mpt is not listed, run
"module load xt-mpt"

 If using OpenMP functions (for example, omp_get_wtime), ensure that the

source code includes the line,

USE omp_lib

Or, includes one of the following:

INCLUDE 'omp.h' //for Fortran, or

#include <omp.h> //for C

 The compile command includes an option to reference the OpenMP
library. The PGI, PathScale, and GNU compilers support OpenMP, and
each one uses a different option.

To compile an OpenMP program, use the following examples:

For C codes:

For Fortran codes:

To run an OpenMP program within a batch script, you also need to set the

$OMP_NUM_THREADS environment variable to the number of threads in the team.
For example:

ftn -o OpenMP_program -mp=nonuma OpenMP_program.f //PGI

ftn -o OpenMP_program -mp OpenMP_program.f //PathScale

ftn -o OpenMP_program -fopenmp OpenMP_program.f //GNU

cc -o OpenMP_program -mp=nonuma OpenMP_program.c //PGI

cc -o OpenMP_program -mp OpenMP_program.c //PathScale

cc -o OpenMP_program -fopenmp OpenMP_program.c //GNU

February 18, 2011 User Guide

In the example above, the application starts OpenMP_program on one node and
spawns a total of sixteen threads. Since Raptor has sixteen cores per compute
node, this yields 1 thread per core.

5.1.4 Hybrid MPI/OpenMP

An application built with the hybrid model of parallel programming can run on
Raptor using both OpenMP and Message Passing Interface (MPI).

When creating a hybrid (MPI/OpenMP) program on Raptor, follow the
instructions in the MPI and OpenMP sections above for creating your program.
Then use the compilation instructions for OpenMP.

To run a hybrid program within a batch script, set $OMP_NUM_THREADS equal to the
number of threads in the team. Then launch your program using aprun as
follows:

Where N1 is the number of MPI tasks and N2 is the number of threads each task
will use.

5.2 Available Compilers

The following compiler suites are available on Raptor:

Cray compiler programming environment
PGI compiler programming environment
GCC compiler programming environment
Intel compiler programming environment

5.2.1 Cray Compiler Programming Environment

This is the recommended compiler as some applications built with the other
compilers have created serious system issues.

The Cray Compiler Programming Environment can be accessed by loading the
module PrgEnv-cray.

setenv OMP_NUM_THREADS 4

aprun -n 1 OpenMP_program [user_arguments]

setenv OMP_NUM_THREADS 16

aprun -n N1 –d N2 hybrid_program [user_arguments]

Module load PrgEnv-cray

February 18, 2011 User Guide

5.2.2 PGI Compiler Programming Environment

The PGI Compiler Programming Environment can be accessed by loading the
module PrgEnv-cray.

5.2.3 GCC Compiler Programming Environment

The GCC Compiler Programming Environment can be accessed by loading the
module PrgEnv-cray.

5.2.4 Intel Compiler Programming Environment

The Intel Compiler Programming Environment can be accessed by loading the
module.

5.3 Relevant Modules

This is not intended to be a comprehensive discussion of all available modules
on the system, but rather a short discussion of those modules required for
compiling, and how to load them. The specific information you provide is up to
you, but this might include, for instance, how modules are used at your center,
information to help users choose between specific modules, or an explanation of
the naming convention used for different versions of a module. If certain
modules are “preferred” or “default” it might also be helpful to note them here.

For more information on using modules, see the Modules User Guide.

5.4 Libraries

5.4.1 AMD Core Math Library (ACML)

Raptor provides the AMD Core Math Library (ACML). ACML is a set of
numerical routines tuned specifically for AMD64 platform processors. The
routines, which are available via both FORTRAN and C interfaces, include:

 Basic Linear Algebra Subroutines (BLAS) - Levels 1, 2, and 3

 Linear Algebra Package (LAPACK)

 Fast Fourier Transform (FFT) routines for single-precision, double-
precision, single-precision complex, and double-precision complex
data types

Module load PrgEnv-pgi

Module load PrgEnv-gcc

Module load PrgEnv-intel/3.0.20

February 18, 2011 User Guide

 Random Number Generator

 Fast Math and Fast Vector Library

The routines in the ACML can be accessed by including the library reference on

your compile command line. For example, ftn –l acml fort.f90

5.4.2 Cray LibSci

In addition to ACML, Raptor provides Cray's LibSci library as part of the Cray
Programming Environment. This library is a collection of single-processor and
parallel numerical routines that have been tuned for optimal performance on
Cray XT systems. The LibSci library is loaded by default and contains optimized
versions of many of the BLAS math routines as well as Cray versions of most of
the ACML routines. Users should call the LibSci versions, instead of the public
domain or user written versions, to optimize application performance on Raptor.

The routines in LibSci are automatically included when using the ftn, cc, or CC
commands. You do not need to use the "-l sci" flag in your compile command
line.

Cray LibSci includes the following:

 Basic Linear Algebra Subroutines (BLAS) - Levels 1, 2, and 3

 Linear Algebra Package (LAPACK)

 Scalable LAPACK (ScaLAPACK) (distributed-memory parallel set of
LAPACK routines)

 Basic Linear Algebra Communication Subprograms (BLACS)

 Iterative Refinement Toolkit (IRT)

 SuperLU (for large, sparse nonsymmetrical systems of linear
equations)

5.4.3 Additional Math Libraries

There is also an extensive set of Math libraries available in the $PET_HOME/MATH
directory on Raptor. Information about these libraries may be found on the
Baseline Configuration Web site at BC policy FY06-01.

5.5 Debuggers

5.5.1 gdb

The GNU Project Debugger (gdb) is a source level debugger that can be invoked
either with a program for execution or a running process id. To launch your
program under gdb for debugging, use:

http://www.ccac.hpc.mil/consolidated/bc/policies.php?choice=math

February 18, 2011 User Guide

To attach gdb to a program that is already executing on this node, use the
following command:

For more information, the GDB manual can be found at
http://www.gnu.org/software/gdb/ .

5.5.2 TotalView

TotalView is a debugger that supports threads, MPI, OpenMP, C/C++, and
Fortran, mixed-language codes, advanced features like on-demand memory leak
detection, other heap allocation debugging features, and the Standard Template
Library Viewer (STLView). Unique features like dive, a wide variety of
breakpoints, the Message Queue Graph/Visualizer, powerful data analysis, and
control at the thread level are also available.

Follow these steps to use TotalView on Raptor via a UNIX X-Windows interface:

1. Ensure that an X server is running on your local system. Linux users
will likely have this by default, but MS Windows users will need to
install a third party X Windows solution. There are various options
available.

2. For Linux users, connect to Raptor using ssh –Y. Windows users will
need to use PuTTY with X11 forwarding enabled
(ConnectionSSHX11Enable X11 forwarding).

3. Compile your program on Raptor with the "-g" option.

4. Submit an interactive job:

5. After a short while the following message will appear:
qsub: waiting for job NNNNNNNN to start
qsub: job NNNNNNN ready

6. You are now logged into an interactive batch session.

7. Load the TotalView module:

gdb a.out pid

gdb a.out corefile

qsub –l ncpus=4 –A project_ID –l walltime=00:30:00 –q

debug –v DISPLAY -l

http://www.gnu.org/software/gdb/

February 18, 2011 User Guide

8. Start program execution:

9. After a short delay, the TotalView windows will pop up. Click "GO" to
start program execution.

For more information on using TotalView, see the TotalView Documentation
page.

5.6 Code Profiling and Optimization

Profiling is the process of analyzing the execution flow and characteristics of your
program to identify sections of code that are likely candidates for optimization,
which increases the performance of a program by modifying certain aspects for
increased efficiency.

We provide CrayPat to assist you in the profiling process. We have also included
(below) a basic overview of optimization methods with information about how
they may improve the performance of your code. More information on
optimization can be found in Performance Optimization Methods (below).

5.6.1 CrayPat

CrayPat is an optional performance analysis tool used to evaluate program
behavior on Cray supercomputer systems. CrayPat consists of the following
major components: pat_build, pat_report, and pat_help. The data produced by
CrayPat can also be used with Cray Apprentice2, an analysis tool that is used to
visualize and explore the performance data captured during program execution.
Man pages are available for pat_build, pat_report, pat_help, and Apprentice2.
Additional information can be found in the document, "Using Cray Performance
Analysis Tools".

The following steps should get you started using CrayPat:

1. Load the "xt-craypat" module

module load xt-craypat

2. Recompile the code as you normally would to generate an executable.

ftn mycode.f90 -o mycode

module load totalview

Totalview apron –a-n 4 ./my_mpi_prog.exe arg1 arg2…

http://www.totalviewtech.com/support/documentation.html
http://docs.cray.com/books/S-2376-51/S-2376-51.pdf
http://docs.cray.com/books/S-2376-51/S-2376-51.pdf

February 18, 2011 User Guide

3. Use the pat_build command to generate an instrumented executable.

pat_build -g mpi -u mycode

This generates an instrumented executable called mycode+pat. Here
the "-g" option enables the "mpi" tracegroup. See "man pat_build" for
available tracegroups.

4. Run the instrumented executable with aprun via PBS.

aprun -n 4 ./mycode+pat

This generates an instrumented output file (e.g. mycode+pat+2007-
12tdt.xf).

5. Use pat_report to display the statistics from the output file

pat_report mycode+pat+2007-12tdt.xf > mycode.pat_report

Additional profiling options are available. See "man pat_build" for additional
instrumentation options.

5.6.2 Additional Profiling Tools

There is also a set of profiling tools available in the $PET_HOME/pkgs directory on
Diamond. Information about these tools may be found on the Baseline
Configuration Web site at BC policy FY07-02.

5.6.3 Program Development Reminders

If an application is not programmed for distributed memory, then only the cores
on a single node can be used. This is limited to 4 cores on Raptor.
Keep the system architecture in mind during code development. For instance, if
your program requires more memory than is available on a single node, then you
will need to parallelize your code so that it can function across multiple nodes.

5.6.4 Performance Optimization Methods

Optimization generally increases compilation time and executable size, and may
make debugging difficult. However, it usually produces code that runs
significantly faster. The optimizations that you can use will vary depending on
your code and the system on which you are running.

Note: Before considering optimization, you should always ensure that your code
runs correctly and produces valid output.

In general, there are four main categories of optimization:

 Global Optimization

http://www.ccac.hpc.mil/consolidated/bc/policies.php?choice=performance

February 18, 2011 User Guide

 Loop Optimization

 Inter-Procedural Analysis and Optimization(IPA)

 Function Inlining

5.6.4.1 Global Optimization

A technique that looks at the program as a whole and may perform any of the
following actions:

 Performed on code over all its basic blocks

 Performs control-flow and data-flow analysis for an entire program

 Detects all loops, including those formed by IF and GOTOs statements
and performs general optimization.

 Constant propagation

 Copy propagation

 Dead store elimination

 Global register allocation

 Invariant code motion

 Induction variable elimination

5.6.4.2 Loop Optimization

A technique that focuses on loops (for, while, etc.,) in your code and looks for
ways to reduce loop iterations or parallelize the loop operations. The following
types of actions may be performed:

 Vectorization – rewrites loops to improve memory access performance.
Some compilers may also support automatic loop vectorization by
converting loops to utilize low-level hardware instructions and registers
if they meet certain criteria.

 Loop unrolling – (also know as "unwinding") replicates the body of
loops to reduce loop branching overhead and provide better
opportunities for local optimization.

 Parallelization – divides loop operations over multiple processors
where possible.

5.6.4.3 Inter-Procedural Analysis and Optimization (IPA)

A technique that allows the use of information across function call boundaries to
perform optimizations that would otherwise be unavailable.

February 18, 2011 User Guide

5.6.4.4 Function Inlining

Function Inlining is a technique that seeks to reduce function call and return
overhead. It is:

 Used with functions that are called numerous times from relatively few
locations.

 Allows a function call to be replaced by a copy of the body of that
function.

 May create opportunities for other types of optimization

 May not be beneficial.

 Improper use of this form of optimization may increase code size and actually
result in less efficient code.

6 Batch Scheduling

6.1 Scheduler

The Portable Batch System (PBS) is currently running on Raptor. It schedules
jobs and manages resources and job queues, and can be accessed through the
interactive batch environment or by submitting a batch request. PBS is able to

manage both single‑processor and multiprocessor jobs.

6.2 Queue Information

The following table describes the PBS queues available on Raptor:

Priority Queue
Name

Job
Class

Max
Wall
Clock
Time

Max
Cores
Per Job

 Comments

Highest test N/A 48
Hours

21856 Staff only testing

urgent Urgent 168
Hours

128 Jobs belonging to DoD
HPCMP Urgent Projects.

debug Debug 1 Hour 21856 User testing

high High 168
Hours

21856 Jobs belonging to DoD
HPCMP High Priority
Projects.

challenge Challenge 168
Hours

21856 Jobs belonging to DoD
HPCMP Challenge
Projects.

February 18, 2011 User Guide

standard Standard 168
Hours

21856 Standard jobs

transfer N/A 12
Hours

16 Data transfer for user
jobs

Lowest background Background 120
Hours

32 Unrestricted Access – no
allocation charge

Figure 9: Queue Information

6.3 Interactive Logins

When you log in to Raptor, you will be running in an interactive shell on a login
node. The login nodes provide login access for Raptor and support such
activities as compiling, editing, and general interactive use by all users. Please
note the Login Node Abuse policy. The preferred method to run resource
intensive executions is to use an interactive batch session.

6.4 Interactive Batch Sessions

In order to use the interactive batch environment, you must first acquire an
interactive batch shell. This is done by executing a qsub command with the "-I"
option from within the interactive environment. For example,

qsub -l ncpus=# -A project_ID -q queue_name -l walltime=wall_time -I

Your batch shell request will be placed in the desired queue and scheduled for
execution. This may take a few minutes because of the system load. Once your
shell starts, you can run or debug interactive applications, execute job scripts,
start an execution on the compute nodes via the aprun command, or postprocess
data, etc.

6.5 Batch Request Submission

PBS batch jobs are submitted via the qsub command. The format of this
command is:

qsub [options] batch_script_file

qsub options may be specified on the command line or imbedded in the batch
script file by lines beginning with "#PBS".

For a more thorough discussion of PBS Batch Submission, see the PBS User
Guide.

February 18, 2011 User Guide

6.6 Batch Resource Directives

Batch resource directives allow you to specify to PBS how your batch jobs should
be run, and what resources your job requires. Although PBS has many
directives, you only need to know a few to run most jobs.

The basic syntax of PBS directives is as follows:

#PBS option[[=]value]

where some options may require values to be included. For example, to set the
number of cores for your job, you might specify the following:

#PBS –l ncpus=8

The following directives are required for all jobs:

Option Value Description

-A project_ID Name of the project

-q queue_name Name of the queue

-l ncpus=# Number of cores

-l walltime=HH:MM:SS Maximum wall time

Figure 10: Required Directives

A more complete listing of batch Resource Directives is available in the PBS
User Guide.

6.7 Launch Command(s)

This should describe the command(s) that may be used on this system to launch
executables onto the compute nodes (i.e., mpiexec_mpt, aprun,etc.). It should
also show all required options for those commands or link to examples.

6.8 Sample Scripts

While it is possible to include all PBS directives at the qsub command-line, the
preferred method is to embed the PBS directives within the batch request script

using "#PBS". The following is a sample batch script:

February 18, 2011 User Guide

#!/bin/bash

Declare the project under which this job run will be charged. (required)
Users can find eligible projects by typing "show_usage" on the command line.
#PBS -A project_ID

Request 1 hour of wallclock time for execution (required).
#PBS -l walltime=01:00:00

Request 4 cores (required).
#PBS -l ncpus=4

Submit job to debug queue (required).
#PBS -q debug

Declare a jobname.

#PBS -N myjob

Send standard output (stdout) and error (stderr) to the same file.
#PBS -j oe

Make a new subdirectory in working storage space.

mkdir $WORKDIR/projA-7

Change to the new directory.

cd $WORKDIR/projA-7

Check MSAS availability. If not available, then wait.
archive stat -s

Retrieve executable program from the MSAS.

archive get -C $ARCHIVE_HOME/project_name program.exe

Retrieve input data file from the MSAS.

archive get -C $ARCHIVE_HOME/project_name/input data.in

Execute a parallel program.
aprun -n 4 my_program < data.in > projA-7.out

Check MSAS availability. If not available, then wait.
archive stat -s

Create a new subdirectory on the MSAS.

archive mkdir -C $ARCHIVE_HOME/project_name output7

Transfer output file back to the MSAS.
archive put -C $ARCHIVE_HOME/project_name/output7 projA-7.out

Clean up unneeded files from working storage.
cd $WORKDIR
rm -r projA-7

February 18, 2011 User Guide

Additional examples are available in the PBS User Guide and in the Sample

Code Repository ($SAMPLES_HOME) on Raptor.

6.9 PBS Commands

The following commands provide the basic functionality for using the PBS batch
system:

qsub: Used to submit jobs for batch processing.
qsub […qsub options…] my_job_script

qstat: Used to check the status of submitted jobs.
qstat PBS_JOBID //check one job

qstat –u my_user_name //check all of user’s jobs

qdel: Used to kill queued or running jobs.
qdel PBS_JOBID

A more complete list of PBS commands is available in the PBS User Guide.

6.10 Advance Reservations

An Advance Reservation Service (ARS) is available on Raptor for reserving up to
10,928 cores for use, starting at a specific date/time, and lasting for a specific
number of hours. The ARS is accessible via most modern web browsers at
https://reservation.hpc.mil/ . Authenticated access is required. An ARS User’s
Guide is available online once you have logged in.

7 Software Resources

7.1 Application Software

All COTS software packages can be found in the $CSI_HOME

(/usr/local/applic) directory. A complete listing with installed versions can be
found on our software page. The general rule for all COTS software packages is
that the two latest versions will be maintained on our systems. For convenience,
modules are also available for most COTS software packages.

7.2 Useful Utilities

The following utilities are available on Raptor:

Utility Description

archive Perform basic file-handling operations on the MSAS

blocker Convert a file to fixed-record-length format

bull Display the system bulletin board

cal2jul Convert a date into the corresponding Julian day

http://www.arl.hpc.mil/SystemSoftware/pbs.html
https://reservation.hpc.mil/
http://www.arl.hpc.mil/Applications/index.php

February 18, 2011 User Guide

Utility Description

datecalc Print an offset from today's date in various formats

extabs Expand tab characters to spaces in a text file

getarchome Display the value of ARCHIVE_HOME for a given userid

getarchost Display the value of ARCHIVE_HOST for a given userid

getprojhome Display the archival directory path for a subproject

getprojhost Display the archival host address for a subproject

justify Justify a character string with padding

lss Show unprintable characters in file names

mpibzip2 Parallel implementation of the bzip2 compression utility

mpscp High-performance remote file copy

qlim Report current batch queue usages and limits.

qpeek Display spooled stdout and stderr for an executing batch job.

qview Display information about batch jobs and queues

show_queues Report current batch queue status, usage, and limits

show_storage Display MSAS allocation and usage by subproject

show_usage Display CPU allocation and usage by subproject

stripdos Strip DOS end-of-record control characters from a text file

stripes Report the OST striping pattern of files in a Lustre filesystem

tails Display the last five lines of one or more files

tree Display the subdirectory tree for a selected directory name

trim Trim trailing blanks from text file lines

vman Browse an on-line man page using the view command

xt_free Display the amount of free and used memory for login nodes

Figure 11: Local Utilities

7.3 Sample Code Repository

The Sample Code Repository is a directory that contains examples for COTS
batch scripts, building and using serial and parallel programs, data management,

and accessing and using serial and parallel math libraries. The $SAMPLES_HOME
environment variable contains the path to this area, and is automatically defined
in your login environment.

8 Links to Vendor Documentation

8.1 Cray Links

Cray Home: http://docs.cray.com/

http://docs.cray.com/

February 18, 2011 User Guide

Cray Application Developer's Environment User's Guide
http://docs.cray.com/books/S-2396-50/S-2396-50.pdf ,

8.2 SUSE Links

Novell Home: http://www.novell.com/linux/
Novell SUSE Linux Enterprise Server: http://www.novell.com/products/server/

8.3 GNU, Pathscale, and Portland Group Links

GNU Home: http://www.gnu.org
GNU Compiler: http://gcc.gnu.org
Pathscale Compiler Documentation: http://www.pathscale.com/node/70
Portland Group Resources Page: http://www.pgroup.com/resources/

http://www.novell.com/linux/
http://www.novell.com/products/server/
http://www.gnu.org/
http://gcc.gnu.org/
http://www.pathscale.com/node/70
http://www.pgroup.com/resources/

